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Bilingual vs. Mulilngual
It depends on the richness of language Li

HRL: High-Resource Language;  LRL: Low-Resource Language 

ΔBLEU socre between MNMT and BiNMT on En→Li and Li→En (averaged)  

BiNMT is better when Li is richer
Why?
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Different directions conflict with each other to various extents.

Negative Language Interference

cosine similarities between
gradients of two translation directions

Our Goals
I. Mitigate the negative 

interference among languages.
II. Prevent the HRL from 

negative interference 
introduced by LRL.

III. Retain high translation 
quality of all directions.

The less gradient similarity,
the darker the color,
the more negative interference.
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Two-Stage Traning

Method Overview

Step 1: train a MNMT model on HRLs

Step 2: continue training the model on all pairs



Step 1: train a MNMT model on HRLs

Method Overview

 no negative interference from LRLs
 mitigate negative interference among HRLs
 SLP: Selective Language-specific Pool
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Method Overview

 HRLs still use SLP selection mechanism
 LRLs utilize the trained MNMT model



Step 2: continue training on all pairs (HRLs & LRLs)

Method Overview

 HRLs still use SLP selection mechanism
 LRLs utilize the trained MNMT model

 share the same MNMT → Knowledge Transfer
 less training batches on LRLs → avoid overfitting
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Dataset
WMT-10: En-X (X in {Fr, Cs, De, Fi, Lv, Et, Ro, Hi, Tr, Gu})
HRLs: Fr, Cs, De, Fi, Lv, and Et;   LRLs: Ro, Hi, Tr, and Gu

OPUS-100: 94 En-X pairs: 95 langs including En, except 5 langs w/o valid/test sets
High-resource: 45 pairs;   Medium-resource: 21 pairs;   Low-resource: 28 pairs.



1. BiNMT: bilingual Transformer model
2. MNMT: multilingual Transformer model trained on all directions
3. mBART: multilingual BART (denoising autoencoder for 

pretraining seq-to-seq models) model, fine-tuned on all directions
4. XLM-R: pretained Transformer-based masked language model on 

100 languages
5. LS-MNMT: language-specific many-to-many multilingual model 

trained on 100 languages

Baseline



Architecture of all experiments: Transformer

learning rate: 5e-4 
warmup steps: 4000
optimizer: Adam (β1 = 0.9, β2 = 0.98)
mini-batch size: 4096 tokens
loss: label smoothing cross-entropy (smoothing ratio = 0.1)

training device: 64 Tesla V100 GPUs

Evaluation Metrics: the case-sensitive detokenized BLEU using sacreBLEU
BLEU+case.mixed+lang.{src}-{tgt}+numrefs.1+smooth.exp+tok.13a+version.1.3.1

Implementation
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En→X on WMT-10: 1→1 (bilingual), 1→N (one-to-many), N→N (many-to-many) models

Experimental Results: WMT-10

 significantly outperform BiNMT on LRLs, yet retain high perfomance on HRLs
 clear improvement over previous multilingual baselines on HRLs and LRLs
 the extra model parameters for our SLP pool and Universal layer are modest

HRLs LRLs
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En→X on WMT-10: 1→1 (bilingual), 1→N (one-to-many), N→N (many-to-many) models

Experimental Results: WMT-10

 significantly outperform BiNMT on LRLs, yet retain high perfomance on HRLs
 clear improvement over previous multilingual baselines on HRLs and LRLs
 the extra model parameters for our SLP pool and Universal layer are modest

HRLs LRLs



X→En and En→X on OPUS-100: N→N (many-to-many) models

Experimental Results: OPUS-100

 consistently outperform previous multilingual baselines on high/medium/low 
resource language pairs (both X→En and En→X directions)



 XLM-R initialization, Two-stage Training strategy, and 
SLP selective mechanism are all beneficial.

Ablation Study



 clearly mitigate the negative interference among most directions

Conflicting Gradient
gradiant similarity (cosine)

The less gradient similarity,
the darker the color,
the more negative interference.



 different languages become more distinct and less likely to overlap with each other
 SLP effectively projects the language-shared representations into language-distinct 

ones for better target language generation.

Decoder Representation Visualization
The t-SNE visualization of 500 random English sentences (hidden states of Decoder), 
ordered from the bottom decoder layer to the top layer. (a, b, c in Decoder, d in SLP)
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Thanks!


